Physician VersionPatient Version

Protocol No.Principal InvestigatorPhaseAge GroupScopeSecondary Protocol No.Status
OSU-12094Newton, HerbertIIIAdultNationalOpen

Adapted from the National Cancer Institute's Physician Data Query (PDQ®) Cancer Clinical Trials (http://www.cancer.gov/clinicaltrials)

Title

A Prospective, Multi-center Trial of NovoTTF-100A Together With Temozolomide Compared to Temozolomide Alone in Patients With Newly Diagnosed GBM.
Effect of NovoTTF-100A Together With Temozolomide in Newly Diagnosed Glioblastoma Multiforme (GBM)

Summary

The study is a prospective, randomly controlled pivotal trial, designed to test the efficacy and safety of a medical device, the NovoTTF-100A, as an adjuvant to the best standard of care in the treatment of newly diagnosed GBM patients. The device is an experimental, portable, battery operated device for chronic administration of alternating electric fields (termed TTFields or TTF) to the region of the malignant tumor, by means of surface, insulated electrode arrays.

To view the NCI PDQ information for this trial, click here

To view the clinicaltrials.gov information for this trial, click here

Detailed Description/Objectives

PAST CLINICAL EXPERIENCE:

The effect of the electric fields generated by the NovoTTF-100A device (TTFields, TTF) has been tested in a large prospective, randomized trial, in recurrent GBM. The outcome of subjects treated with the NovoTTF-100A device was compared to those treated with an effective best standard of care chemotherapy (including bevacizumab). NovoTTF-100A subjects had comparable overall survival to subjects receiving the best available chemotherapy in the US today. Similar results showing comparability of NovoTTF-100A to BSC chemotherapy were seen in all secondary endpoints.

Recurrent GBM patients treated with the NovoTTF-100A device in this trial experienced fewer side effects in general, significantly fewer treatment related side effects, and significantly lower gastrointestinal, hematological and infectious adverse events compared to controls. The only device-related adverse events seen were a mild to moderate skin irritation beneath the device electrodes. Finally, quality of life measures were better in NovoTTF-100A subjects as a group when compared to subjects receiving effective best standard of care chemotherapy.

In a small scale pilot trial in newly diagnosed GBM patients, the treatment was well tolerated and suggested that NovoTTF-100A may improve time to disease progression and overall survival of newly diagnosed GBM patients. Although the number of patients in the pilot trial was small, The FDA has determined that the data gathered so far warrant testing of NovoTTF-100A treatment as a possible therapy for patients with newly diagnosed GBM.

DESCRIPTION OF THE TRIAL:

All patients included in this trial are newly diagnosed GBM patients who underwent a biopsy or surgery (with or without Gliadel wafers), followed by radiation therapy in combination with Temozolomide chemotherapy. In addition, all patients must meet all eligibility criteria.

Eligible patients will be randomly assigned to one of two groups:

1. Treatment with the NovoTTF-100A device in combination with Temozolomide chemotherapy.

2. Treatment with Temozolomide alone, as the best known standard of care.

Patients will be randomized at a 2:1 ratio (2 of every three patients who participate in the trial will be treated with the NovoTTF-100A device). Baseline tests will be performed in patients enrolled in both arms, including specific genetic tests done using tumor samples obtained during their initial surgery. If assigned to the NovoTTF-100A in combination with Temozolomide group, the patients will be treated continuously with the device until second progression. They will also receive temozolomide and possibly a second line treatment that can be one of the following: re-operation, local radiotherapy (gamma-knife), a second line of chemotherapy or a combination of the above.

NovoTTF-100A treatment will consist of wearing four electrically insulated electrode arrays on the head. Electrode array placement will require shaving of the scalp before and frequently during the treatment. After an initial short visit to the clinic for training and monitoring, patients will be released to continue treatment at home where they can maintain their regular daily routine.

During the trial, regardless of which treatment group the patient was assigned to, he or she will need to return once every month to the clinic where an examination by a physician and a routine laboratory examinations will be done. These routine visits will continue for as long as the patient's disease is not progressing for the second time under the study treatment. If such occurs, patients will need to return once per month for two more months to the clinic for similar follow up examinations.

During the visits to the clinic patients will be examined physically and neurologically. Additionally, routine blood tests will be performed. A routine MRI of the head will be performed at baseline and every second month thereafter, until second progression. After this follow up plan, patients will be contacted once per month by telephone to answer basic questions about their health status.

SCIENTIFIC BACKGROUND:

Electric fields exert forces on electric charges similar to the way a magnet exerts forces on metallic particles within a magnetic field. These forces cause movement and rotation of electrically charged biological building blocks, much like the alignment of metallic particles seen along the lines of force radiating outwards from a magnet.

Electric fields can also cause muscles to twitch and if strong enough may heat tissues. TTFields are alternating electric fields of low intensity. This means that they change their direction repetitively many times a second. Since they change direction very rapidly (200 thousand times a second), they do not cause muscles to twitch, nor do they have any effects on other electrically activated tissues in the body (brain, nerves and heart). Since the intensities of TTFields in the body are very low, they do not cause heating.

The breakthrough finding made by NovoCure was that finely tuned alternating fields of very low intensity, now termed TTFields (Tumor Treating Fields), cause a significant slowing in the growth of cancer cells. Due to the unique geometric shape of cancer cells when they are multiplying, TTFields cause the building blocks of these cells to move and pile up in such a way that the cells physically explode. In addition, cancer cells also contain miniature building blocks which act as tiny motors in moving essential parts of the cells from place to place. TTFields cause these tiny motors to fall apart since they have a special type of electric charge.

As a result of these two effects, cancer tumor growth is slowed and can even reverse after continuous exposure to TTFields.

Other cells in the body (normal healthy tissues) are affected much less than cancer cells since they multiply at a much slower rate if at all. In addition TTFields can be directed to a certain part of the body, leaving sensitive areas out of their reach.

In conclusion, TTField hold the promise of serving as a brand new cancer treatment with very few side effects and promising affectivity in slowing or reversing this disease.

Eligibility

Inclusion Criteria:

1. Pathological evidence of GBM using WHO classification criteria.

2. > 18 years of age.

3. Received maximal debulking surgery and radiotherapy concomitant with Temozolomide (45-70Gy):

1. Patients may enroll in the study if received Gliadel wafers before entering the trial

2. Any additional treatments received prior to enrollment will be considered an exclusion.

3. Minimal dose for concomitant radiotherapy is 45 Gy

4. Karnofsky scale ≥ 70

5. Life expectancy at least 3 months

6. Participants of childbearing age must use effective contraception.

7. All patients must sign written informed consent.

8. Treatment start date at least 4 weeks out from surgery.

9. Treatment start date at least 4 weeks out but not more than 7 weeks from the later of last dose of concomitant Temozolomide or radiotherapy.

Exclusion Criteria:

1. Progressive disease (according to MacDonald Criteria). If pseudoprogression is suspected, additional imaging studies must be performed to rule out true progression.

2. Actively participating in another clinical treatment trial

3. Pregnant

4. Significant co-morbidities at baseline which would prevent maintenance Temozolomide treatment:

1. Thrombocytopenia (platelet count < 100 x 103/μL)

2. Neutropenia (absolute neutrophil count < 1.5 x 103/μL)

3. CTC grade 4 non-hematological Toxicity (except for alopecia, nausea, vomiting)

4. Significant liver function impairment - AST or ALT > 3 times the upper limit of normal

5. Total bilirubin > upper limit of normal

6. Significant renal impairment (serum creatinine > 1.7 mg/dL)

5. Implanted pacemaker, programmable shunts, defibrillator, deep brain stimulator, other implanted electronic devices in the brain, or documented clinically significant arrhythmias.

6. Infra-tentorial tumor

7. Evidence of increased intracranial pressure (midline shift > 5mm, clinically significant papilledema, vomiting and nausea or reduced level of consciousness)

8. History of hypersensitivity reaction to Temozolomide or a history of hypersensitivity to DTIC.

Applicable Disease Sites

Brain and Central Nervous System

Participating Institutions

James Cancer Hospital
OSU Cancer Center

Contact

Jill Brown
Phone:614-293-5554
Email:jill.brown@osumc.edu