

The Value in Drawing a Pre-Op HbA1c in Non-diabetic Adult Patients: A literature review

Kelly Vala, MS, APRN-CNP, AOCNP® and Katie Long, MS, APRN-CNP, AOCNP®

The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

The James
THE OHIO STATE UNIVERSITY
WEXNER MEDICAL CENTER

Background of Issue

- Surgical site infections (SSIs) are among the most common healthcare acquired infections¹
- Wound healing is affected by hyperglycemia (HG) due to:
 - Suppression of various aspects of immune function
 - Activation of proinflammatory cytokines²
- Higher hemoglobin A1c (HbA1c) may be a predictor of who will experience stress hyperglycemia (a transient increase in blood glucose brought on by illness or stress on the body)³

Significance of Issue

- SSI costs: ~\$20,000/patient and ~\$3.5-10 billion annually⁴
- 77% post-op mortalities attributed to SSIs
 - Of these, ~60% are preventable⁴

PICOT Question

- Surgery creates bodily stress, which can lead to stress hyperglycemia (SHG), which can lead to increased risk of SSIs
- A controlled diabetic (DM) patient with a similar HbA1c to a non-diabetic does not reflect the same metabolic status
- So we asked: is there a benefit to having a pre-op HbA1c drawn on all patients?
- PICOT: In non-diabetic adult patients undergoing surgery (P), how does elevated pre-op HbA1c (I) vs not knowing a pre-op HbA1c (C) affect complication rates (O) in the acute post-op phase (T)?

Pre-op HbA1c National Guidelines

- American College of Surgeons Strong for Surgery: check a fasting blood glucose (FBG) the AM of surgery IF prior DM diagnosis OR BMI >30 OR age >45; and pre-op HbA1c only if prior DM diagnosis⁵
- American Diabetes Association: perform a pre-op risk assessment for those at risk for ischemic heart disease and those with neuropathy or renal failure⁶
- JAMA Clinical Update: pre-op HbA1c in all DM patients, defer elective surgery if HbA1c >8%; no guidelines on non-DM patients⁷

Synthesis Table

Level of Evidence	8	9	10	11	12	13	14	15
Level I: Systematic review or meta analysis								
Level II: Randomized controlled trial								
Level III: Controlled trial without randomization								
Level IV: Case-control or cohort study				x	x		x	
Level V: Systematic review of qualitative or descriptive study						x		x
Level VI: Qualitative or descriptive study	x	x	x					
Level VII: Expert opinion or consensus								

Literature search of online databases of PubMed, CINAHL, and Cochrane yielded low level evidence linking perioperative blood glucose optimization to better surgical outcomes

Conclusion

- More research into the topic warranted
 - Limited sample sizes, limited pre-op HbA1c collection, many studies retrospective
- Current data support focus on strict perioperative BG monitoring and treatment as best measure to prevent SSIs vs pre-op optimization of HbA1c
- Even less research is available on the oncology population
- Should we change our practice...? Not yet!
- According to the Center for Disease Control (CDC), there are no randomized controlled trials evaluating optimal pre-op HbA1c for prevention of SSIs in DM and non-DM patients
 - CDC classification: "No recommendation/Unresolved issue"¹⁶

References

- Zimlichman, E., Henderson, D., Tamir, O., Franz, C., Song, P., Yamin, C.K., Keshishian, C., Denham, C.R., Bates, D.W. (2013). Health care-associated infections: a meta-analysis of costs and financial impact on the US healthcare system. *JAMA Internal Medicine*, 173(2), 233-240. doi:10.1001/jamainternmed.2013.3763.
- Evans, C., Lee, M., & Ruhman, M. (2010). Perioperative glucose management in the perioperative period. *Surgical Clinics of North America*, 95, 337-354. doi:https://doi.org/10.1016/j.suc.2010.04.006.
- Patelani, N.E., Goobadia, R.Y., McDowell, M.E., & Aboanjar, S.M. (2016). Stress hyperglycemia during surgery and anesthesia: Pathogenesis and clinical implications. *Current Diabetes Reports*, 16(3), 1-7. doi:10.1007/s11892-016-0721-y.
- Dowdy, S., Carty, T., & Cima, R. (2019). Reducing infection rates through perioperative glycemic control - how sweet is it. *Gynecologic Oncology*, 146, 215-216.
- American College of Surgeons Strong for Surgery. (2017). *Glycemic control*. Retrieved from: <https://www.facs.org/quality-programs/strong-for-surgery/glycemic-control>
- American Diabetes Association. (2018). Diabetes care in the hospital: standards of medical care in diabetes. *Diabetes Care*, 41, S144-S151. doi:https://doi.org/10.2337/dc18-S014.
- Simha, V., & Shrestha, P. (2019). Perioperative glucose control in patients with diabetes undergoing elective surgery. *JAMA*, 322(4), 399-400. doi:10.1001/jama.2019.20290.
- Bauer, J., M., Lehman, M., Soleiman, A., & Tran, T. (2016). Association between elevated pre-operative glycosylated hemoglobin and post-operative infections after non-emergent surgery. *Annals of medicine and surgery*, 2012(10), 77-82. doi:10.1016/j.amsu.2016.07.025.
- D'Aquila, A., & Elliger, B. (2013). Perioperative glycemic control: what is worth the effort? *Current Opinions in Anesthesiology*, 26(4), 438-443. doi:10.1097/AOA.0b013e3182832300.
- Dharmarajan, K., Levy, N., & Bell, G.M. (2016). The impact of glycemic variability on the surgical patient. *Current Opinions in Anesthesiology*, 29(3), 430-7. doi:10.1097/AOA.0000000000000236.
- Hopkins, L., Brown-Brodenick, J., Hearn, J., Malcom, J., Chan, J., Hickey-Bourne, W., De Souza, F., Walker, M.C., & Gagne, S. (2017). Implementation of a referral to discharge glycemic control initiation for reduction of surgical site infections in gynecologic oncology patients. *Gynecologic Oncology*, 146(2), 228-233.
- Kalra, M., Nisselbaum, P., Amar-Zikkri, A., Canit, F., & Feldman, L.S. (2017). Association of elevated preoperative hemoglobin A1c and post-operative complications in non-diabetic patients: A systematic review. *World Journal of Surgery*, 42(1), 61-72. doi:10.1007/s00268-017-1064-4. doi:10.1007/s00268-017-1064-4. 2017/01/19.
- May, A.C., Kaufmann, R.M., & Collier, B.R. (2011). The place for glycemic control in the surgical patient. *Surgical Infection*, 12(5), 405-18. doi:10.1089/sur.2011.0199.
- O'Sullivan, C., Hynes, N., & McHughen, B. (2006). Hemoglobin A1c (HbA1c) in non-diabetic and diabetic vascular patients. Is HbA1c an independent risk factor for prediction of adverse outcome? *Endocrine Surgery*, 29, 187-197. doi:10.1016/j.endos.2006.01.011.
- Rutter, J., & Sauerbrei, K. (2013). Hyperglycemia as a Risk Factor in the Perioperative Patient. *AORN Journal*, 96(3), 362-364. doi:10.1016/j.aorn.2011.06.010.
- Berrios-Torres, S.J., Umscheid, C.A., Bratzler, D.W., Less, B., Stone, E.C., Kelz, R.R., Schechter, W.P. (2017). Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection. *JAMA Surgery*, 152(8), 784-791. doi:10.1001/jamasurg.2017.0904.