Detection of Acute Radiation Sickness: A Feasibility Study in Non-Human Primates Circulating miRNAs for Triage in Radiological Events.

Menon N, Rogers CJ, Lukaszewicz AI, Axtelle J, Yadav M, Song F, Chakravarti A, Jacob NK
PLoS One 11 e0167333 01/01/2016


Development of biomarkers capable of estimating absorbed dose is critical for effective triage of affected individuals after radiological events. Levels of cell-free circulating miRNAs in plasma were compared for dose-response analysis in non-human primates (NHP) exposed to lethal (6.5 Gy) and sub-lethal (1 and 3 Gy) doses over a 7 day period. The doses and test time points were selected to mimic triage needs in the event of a mass casualty radiological event. Changes in miRNA abundance in irradiated animals were compared to a non-irradiated cohort and a cohort experiencing acute inflammation response from exposure to lipopolysaccharide (LPS). An amplification-free, hybridization-based direct digital counting method was used for evaluation of changes in microRNAs in plasma from all animals. Consistent with previous murine studies, circulating levels of miR-150-5p exhibited a dose- and time-dependent decrease in plasma. Furthermore, plasma miR-150-5p levels were found to correlate well with lymphocyte and neutrophil depletion kinetics. Additionally, plasma levels of several other evolutionarily and functionally conserved miRNAs were found altered as a function of dose and time. Interestingly, miR-574-5p exhibited a distinct, dose-dependent increase 24 h post irradiation in NHPs with lethal versus sub-lethal exposure before returning to the baseline level by day 3. This particular miRNA response was not detected in previous murine studies but was observed in animals exposed to LPS, indicating distinct molecular and inflammatory responses. Furthermore, an increase in low-abundant miR-126, miR-144, and miR-21 as well as high-abundant miR-1-3p and miR-206 was observed in irradiated animals on day 3 and/or day 7. The data from this study could be used to develop a multi-marker panel with known tissue-specific origin that could be used for developing rapid assays for dose assessment and evaluation of radiation injury on multiple organs. Furthermore this approach may be utilized to screen for tissue toxicity in patients who receive myeloablative and therapeutic radiation.

Full Text