Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis.

Wang S, Zhao Z, Haque F, Guo P
Curr Opin Biotechnol 51 80-89 01/01/2018

Abstract

Biological systems contain highly-ordered structures performing diverse functions. The elegant structures of biomachines have inspired the development of nanopores as single molecule sensors. Over the years, the utility of nanopores for detecting a wide variety of analytes have rapidly emerged for sensing, sequencing and diagnostic applications. Several protein channels with diverse shapes and sizes, such as motor channels from bacteriophage Phi29, SPP1, T3, and T4, as well as α-hemolysin, MspA, aerolysin, FluA, OmpF/G, CsgG, ClyA, have been continually investigated and developed as nanopores. Herein, we focus on advances in biological nanopores for single molecule sensing and DNA sequencing from a protein engineering standpoint for changing pore sizes, altering charge distributions, enhancing sensitivity, improving stability, and imparting new detection capabilities.

Full Text