HDAC10 as a potential therapeutic target in ovarian cancer.

Islam MM, Banerjee T, Packard CZ, Kotian S, Selvendiran K, Cohn DE, Parvin JD
Gynecol Oncol 144 613-620 01/01/2017

Abstract

OBJECTIVE: We analyzed histone deacetylase 10 (HDAC10) for function in the context of the DNA damage response in BRCA1-null ovarian cancer cells as well as evaluated the potential of general HDAC inhibitors in primary ovarian carcinoma cells. HDAC10 had previously been shown to be highly stimulatory to the process of homology directed repair in HeLa cells, and in this study we investigated whether HDAC10 could impact in vitro the response to anticancer therapies. We hypothesized that the loss of HDAC10 would sensitize cells to platinum therapy.

METHODS: We combined informatics analysis of large DNA sequencing datasets from ovarian cancer tumors with tissue culture based assays of primary and established cell lines to test for sensitivity to platinum therapy if HDAC10 activity was inhibited or depleted.

RESULTS: Using The Cancer Genome Atlas (TCGA) dataset, we found that deep deletions in HDAC10 occurred in 5-10% of ovarian cancer tumors. From the TCGA data we found that low HDAC10 mRNA levels correlated with platinum sensitivity of the tumors. Cell proliferation and DNA damage assays in a BRCA1-null ovarian carcinoma cell line demonstrated reduced DNA repair capacity and sensitization of platinum therapy. Similarly, primary ovarian carcinoma cells demonstrated a sensitization to platinum therapies when treated with HDAC inhibitors.

CONCLUSIONS: From the results of this study, we suggest that the inhibition of HDAC10 may potentiate the effects of platinum therapies in ovarian tumors.

Full Text