Hsp90 inhibition increases SOCS3 transcript and regulates migration and cell death in chronic lymphocytic leukemia.

Chen TL, Gupta N, Lehman A, Ruppert AS, Yu L, Oakes CC, Claus R, Plass C, Maddocks KJ, Andritsos L, Jones JA, Lucas DM, Johnson AJ, Byrd JC, Hertlein E
Oncotarget 7 28684-96 05/10/2016

Abstract

Epigenetic or transcriptional silencing of important tumor suppressors has been described to contribute to cell survival and tumorigenesis in chronic lymphocytic leukemia (CLL). Using gene expression microarray analysis, we found that thousands of genes are repressed more than 2-fold in CLL compared to normal B cells; however therapeutic approaches to reverse this have been limited in CLL. Following treatment with the Hsp90 inhibitor 17-DMAG, a significant number of these repressed genes were significantly re-expressed. One of the genes significantly repressed in CLL and up-regulated by 17-DMAG was suppressor of cytokine signaling 3, (SOCS3). SOCS3 has been shown to be silenced in solid tumors as well as myeloid leukemia; however little is known about the regulation in CLL. We found that 17-DMAG induces expression of SOCS3 by via the activation of p38 signaling, and subsequently inhibits AKT and STAT3 phosphorylation resulting in downstream effects on cell migration and survival. We therefore suggest that SOCS3 is an important signaling protein in CLL, and Hsp90 inhibitors represent a novel approach to target transcriptional repression in B cell lymphoproliferative disorders which exhibit a substantial degree of gene repression.

Full Text