Lipid-Albumin Nanoparticles (LAN) for Therapeutic Delivery of Antisense Oligonucleotide against HIF-1α.

Li H, Quan J, Zhang M, Yung BC, Cheng X, Liu Y, Lee YB, Ahn CH, Kim DJ, Lee RJ
Mol Pharm 13 2555-62 01/05/2016


Lipid-albumin nanoparticles (LAN) were synthesized for delivery of RX-0047, an antisense oligonucleotide (ASO) against the hypoxia inducible factor-1 alpha (HIF-1α) to solid tumor. These lipid nanoparticles (LNs) incorporated a human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate, which is cationic and can form electrostatic complexes with negatively charged oligonucleotides. The delivery efficiency of LAN-RX-0047 was investigated in KB cells and a KB murine xenograft model. When KB cells were treated with LAN-RX-0047, significant HIF-1α downregulation and enhanced cellular uptake were observed compared to LN-RX-0047. LN-RX-0047 and LAN-RX-0047 showed similar cytotoxicity against KB cells with IC50 values of 19.3 ± 3.8 and 20.1 ± 4.2 μM, respectively. LAN-RX-0047 was shown to be taken up by the cells via the macropinocytosis and caveolae-mediated endocytosis pathways while LN-RX-0047 was taken up by cells via caveolae-mediated endocytosis. In the KB xenograft tumor model, LAN-RX-0047 exhibited tumor suppressive activity and significantly reduced intratumoral HIF-1α expression compared to LN-RX-0047. Furthermore, LAN-RX-0047 greatly increased survival time of mice bearing KB-1 xenograft tumors at doses of either 3 mg/kg or 16 mg/kg. These results indicated that LAN-RX-0047 is a highly effective vehicle for therapeutic delivery of antisense agents to tumor.

Full Text