The Epstein-Barr Virus Lytic Protein BZLF1 as a Candidate Target Antigen for Vaccine Development.

Hartlage AS, Liu T, Patton JT, Garman SL, Zhang X, Kurt H, Lozanski G, Lustberg ME, Caligiuri MA, Baiocchi RA
Cancer Immunol Res 3 787-94 07/01/2015


The Epstein-Barr virus (EBV) is an oncogenic, γ-herpesvirus associated with a broad spectrum of disease. Although most immune-competent individuals can effectivley develop efficient adaptive immune responses to EBV, immunocompromised individuals are at serious risk for developing life-threatening diseases, such as Hodgkin lymphoma and posttransplant lymphoproliferative disorder (PTLD). Given the significant morbidity associated with EBV infection in high-risk populations, there is a need to develop vaccine strategies that restore or enhance EBV-specific immune responses. Here, we identify the EBV immediate-early protein BZLF1 as a potential target antigen for vaccine development. Primary tumors from patients with PTLD and a chimeric human-murine model of EBV-driven lymphoproliferative disorder (EBV-LPD) express BZLF1 protein. Pulsing human dendritic cells (DC) with recombinant BZLF1 followed by incubation with autologous mononuclear cells led to expansion of BZLF1-specific CD8(+) T cells in vitro and primed BZLF1-specific T-cell responses in vivo. In addition, vaccination of hu-PBL-SCID mice with BZLF1-transduced DCs induced specific cellular immunity and significantly prolonged survival from fatal EBV-LPD. These findings identify BZLF1 as a candidate target protein in the immunosurveillance of EBV and provide a rationale for considering BZLF1 in vaccine strategies to enhance primary and recall immune responses and potentially prevent EBV-associated diseases.

Full Text