iScience 26 106904

CD200R signaling contributes to unfavorable tumor microenvironment through
regulating production of chemokines by tumor-associated myeloid cells.

Lin CH, Talebian F, Yang L, Zhu J, Liu JQ, Zhao B, Basu S, Pan X, Chen X, Yan P, Carson WE, Xin G, Wen H, Wang R, Li Z, Ma Q, Bai XF

CD200 is overexpressed in many solid tumors and considered as an immune checkpoint molecule dampening cancer immunity. In this study, we found that CD200R-/- mice were significantly more potent in rejecting these CD200+ tumors. scRNA sequencing demonstrated that tumors from CD200R-/- mice had more infiltration of CD4+ and CD8+ T cells, and NK cells but less infiltration of neutrophils. Antibody depletion experiments revealed that immune effector cells are crucial in inhibiting tumor growth in CD200R-/- mice. Mechanistically, we found that CD200R signaling regulates the expression of chemokines in tumor-associated myeloid cells (TAMCs). In the absence of CD200R, TAMCs increased expression of CCL24 and resulted in increased infiltration of eosinophils, which contributes to anti-tumor activity. Overall, we conclude that CD200R signaling contributes to unfavorable TME through chemokine-dependent recruitment of immune suppressive neutrophils and exclusion of anti-cancer immune effectors. Our study has implications in developing CD200-CD200R targeted immunotherapy of solid tumors.